CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
基于FOA的变分模态分解在轴承故障诊断中的应用
Authors
刘畅
杨建伟
王衍学
Publication date
1 January 2020
Publisher
Editorial Office of Journal of Mechanical Transmission
Doi
Cite
Abstract
变分模态分解(VMD)广泛应用于故障诊断中,从振动信号中提取故障特征是故障诊断过程中的关键部分。针对强背景噪声和脉冲干扰下滚动轴承早期故障特征难以提取的问题,提出了一种新的基于果蝇优化算法(FOA)的变分模态分解的轴承故障诊断方法。首先,利用果蝇优化算法自适应优化VMD的惩罚参数α和分解数K,获取最优参数组合;然后,对信号进行VMD分解,得到K个模态分量;最后,基于峭度最大化准则选取最优模态分量进行包络解调分析,提取出故障特征频率。通过仿真信号分析、实际故障轴承信号验证以及与基于果蝇优化算法的多分辨奇异值分解(MRSVD)方法进行对比,证明了所提方法的有效性
Similar works
Full text
Available Versions
Directory of Open Access Journals
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:doaj.org/article:3d31cffd6...
Last time updated on 05/04/2023