CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
基于变分模态分解和卷积神经网络融合的滚动轴承故障诊断方法
Authors
刘春阳
徐彦伟
+4 more
李济顺
李魁
杨芳
隋新
Publication date
1 January 2022
Publisher
Editorial Office of Journal of Mechanical Transmission
Doi
Cite
Abstract
针对在强烈背景噪声影响下的滚动轴承故障特征提取困难,提出了一种基于变分模态分解与卷积神经网络融合的滚动轴承故障诊断方法。将原始振动信号分解为多个模态分量,结合皮尔逊相关系数作为自动分解终止阈值和最优模态分量选取指标;针对轴承故障特征构建卷积神经网络,将最优模态分量作为输入以提取、分类故障类型。试验结果表明,所提方法能够精确诊断滚动轴承故障,为强噪声影响下的滚动轴承故障识别提供了新的思路
Similar works
Full text
Available Versions
Directory of Open Access Journals
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:doaj.org/article:c2f2414ac...
Last time updated on 05/04/2023