Structure, Stability and Superconductivity of N-doped Lutetium Hydrides at kbar Pressures

Abstract

The structure of the material responsible for the room temperature and near ambient pressure superconductivity reported in an N-doped lutetium hydride [Nature, 615, 244 (2023)] has not been conclusively determined. Herein, density functional theory calculations are performed in an attempt to uncover what it might be. Guided by a range of strategies including crystal structure prediction and modifications of existing structure types, we present an array of Lu-N-H phases that are dynamically stable at experimentally relevant pressures. Although none of the structures found are thermodynamically stable, and none are expected to remain superconducting above 17 K at 10 kbar, a number of metallic compounds with fcc Lu lattices -- as suggested by the experimental X-ray diffraction measurements of the majority phase -- are identified. The system whose calculated equation of states matches best with that measured for the majority phase is fluorite-type LuH2, whose 10 kbar superconducting critical temperature was estimated to be 0.09 K using the Allen-Dynes modified McMillan equation.Comment: 11 pages, 8 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions