Synthesis of built-in highly strained monolayer MoS2 using liquid precursor chemical vapor deposition

Abstract

Strain engineering is an efficient tool to tune and tailor the electrical and optical properties of 2D materials. The built-in strain can be tuned during the synthesis process of a two dimensional semiconductor, as molybdenum disulfide, by employing different growth substrate with peculiar thermal properties. In this work we demonstrate that the built-in strain of MoS2 monolayers, grown on SiO2/Si substrate using liquid precursors chemical vapor deposition, is mainly dominated by the size of the monolayer. In fact, we identify a critical size equal to 20 um, from which the built-in strain increases drastically. The built-in strain is maximized for 60 um sized monolayer, leading to 1.2% tensile strain with a partial release of strain close to the monolayer triangular vertexes due to formation of nanocracks. These findings also imply that the standard method for evaluation of the number of layers based on the Raman modes separation becomes unreliable for monolayer with a lateral size above 20 um

    Similar works

    Full text

    thumbnail-image

    Available Versions