CORE
🇺🇦
make metadata, not war
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Master flow curves as a tool to modelling ceramic injection molding
Authors
Chiara Barretta
Petr Filip
Berenika Hausnerová
Publication date
8 July 2019
Publisher
'Elsevier BV'
Abstract
Compounds used for Ceramic Injection Molding (CIM) are rheologically complex materials. The applicability of currently available mathematical models to CIM systems fails due to high number of variables playing a significant role: binder composition, powder morphology and loading as well as concentration of processing aids. In this paper we present the way to overcome this issue with a model, where a set of its parameters is a priori given regardless the contents of powder or additional ingredients in a feedstock. Then, the relative viscosity of an individual composition of a CIM feedstock is obtained only by inserting the corresponding concentrations of powder (aluminium oxide) and additive (stearic acid). The proposed master curve exhibits the fixed functional structure common for 36 composition combinations arising from Al 2 O 3 powder loading (0–50%) and stearic acid concentration (up to 5%). The deviation from the measured values does not exceed an experimental error. © 2019 Elsevier Ltd and Techna Group S.r.l.Grant Agency CR [17-26808S]; Ministry of Education, Youth, and Sports of the Czech Republic - Program NPU I [LO1504
Similar works
Full text
Available Versions
Institutional repository of Tomas Bata University Library
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:publikace.k.utb.cz:10563/1...
Last time updated on 15/08/2019