Converging Periodic Boundary Conditions and Detection of Topological Gaps on Regular Hyperbolic Tessellations

Abstract

Tessellations of the hyperbolic spaces by regular polygons are becoming popular because they support discrete quantum and classical models displaying unique spectral and topological characteristics. Resolving the true bulk spectra and the thermodynamic response functions of these models requires converging periodic boundary conditions and our work delivers a practical solution for this open problem on generic {p,q}-tessellations. This enables us to identify the true spectral gaps of bulk Hamiltonians and, as an application, we construct all but one topological models that deliver the topological gaps predicted by the K-theory of the lattices. We demonstrate the emergence of the expected topological spectral flows whenever two such bulk models are deformed into each other and, additionally, we prove the emergence of topological channels whenever a soft physical interface is created between different topological classes of Hamiltonians

    Similar works

    Full text

    thumbnail-image

    Available Versions