Exciton Dynamics and Time-Resolved Fluorescence in Nanocavity-Integrated Monolayers of Transition-Metal Dichalcogenides

Abstract

We have developed an ab-initio-based fully-quantum numerically-accurate methodology for the simulation of the exciton dynamics and time- and frequency-resolved fluorescence spectra of the cavity-controlled two-dimensional materials at finite temperature and applied this methodology to the single-layer WSe2 system. This allowed us to establish dynamical and spectroscopic signatures of the polaronic and polaritonic effects as well as uncover their characteristic timescales in the relevant range of temperatures

    Similar works