Investigating the spatial heterogeneity of factors influencing speeding-related crash severities using correlated random parameter order models with heterogeneity-in-means

Abstract

Speeding has been acknowledged as a critical determinant in increasing the risk of crashes and their resulting injury severities. This paper demonstrates that severe speeding-related crashes within the state of Pennsylvania have a spatial clustering trend, where four crash datasets are extracted from four hotspot districts. Two log-likelihood ratio (LR) tests were conducted to determine whether speeding-related crashes classified by hotspot districts should be modeled separately. The results suggest that separate modeling is necessary. To capture the unobserved heterogeneity, four correlated random parameter order models with heterogeneity in means are employed to explore the factors contributing to crash severity involving at least one vehicle speeding. Overall, the findings exhibit that some indicators are observed to be spatial instability, including hit pedestrian crashes, head-on crashes, speed limits, work zones, light conditions (dark), rural areas, older drivers, running stop signs, and running red lights. Moreover, drunk driving, exceeding the speed limit, and being unbelted present relative spatial stability in four district models. This paper provides insights into preventing speeding-related crashes and potentially facilitating the development of corresponding crash injury mitigation policies

    Similar works

    Full text

    thumbnail-image

    Available Versions