Abstract

We present results from the Cosmic Evolution Early Release Survey (CEERS) on the stellar-population parameters for 28 galaxies with redshifts 4<z<94<z<9 using imaging data from the James Webb Space Telescope (JWST) Mid-Infrared Instrument (MIRI) combined with data from the Hubble Space Telescope and the Spitzer Space Telescope. The JWST/MIRI 5.6 and 7.7 μ\mum data extend the coverage of the rest-frame spectral-energy distribution (SED) to nearly 1 micron for galaxies in this redshift range. By modeling the galaxies' SEDs the MIRI data show that the galaxies have, on average, rest-frame UV (1600 \r{A}) - II-band colors 0.4 mag bluer than derived when using photometry that lacks MIRI. Therefore, the galaxies have lower (stellar)-mass-to-light ratios. The MIRI data reduce the stellar masses by ΔlogM=0.25\langle \Delta\log M_\ast\rangle=0.25 dex at 4<z<64<z<6 (a factor of 1.8) and 0.37 dex at 6<z<96<z<9 (a factor of 2.3). This also reduces the star-formation rates (SFRs) by ΔlogSFR=0.14\langle \Delta\log\mathrm{SFR} \rangle=0.14 dex at 4<z<64<z<6 and 0.27 dex at 6<z<96<z<9. The MIRI data also improve constraints on the allowable stellar mass formed in early star-formation. We model this using a star-formation history that includes both a "burst' at zf=100z_f=100 and a slowly varying ("delayed-τ\tau") model. The MIRI data reduce the allowable stellar mass by 0.6 dex at 4<z<64<z< 6 and by \approx1 dex at 6<z<96<z<9. Applying these results globally, this reduces the cosmic stellar-mass density by an order of magnitude in the early universe (z9z\approx9). Therefore, observations of rest-frame \gtrsim1 μ\mum are paramount for constraining the stellar-mass build-up in galaxies at very high-redshifts.Comment: Updated with accepted ApJ version. Part of the CEERS Focus Issue. 27 pages, many figures (4 Figure Sets, available upon reasonable request

    Similar works

    Full text

    thumbnail-image

    Available Versions