Phase-field-lattice Boltzmann method for dendritic growth with melt flow and thermosolutal convection–diffusion

Abstract

We propose a new phase-field model formulated within the system of lattice Boltzmann (LB) equation for simulating solidification and dendritic growth with fully coupled melt flow and thermosolutal convection–diffusion. With the evolution of the phase field and the transport phenomena all modeled and integrated within the same LB framework, this method preserves and combines the intrinsic advantages of the phase-field method (PFM) and the lattice Boltzmann method (LBM). Particularly, the present PFM/LBM model has several improved features compared to the existing phase-field models including: (1) a novel multiple-relaxation-time (MRT) LB scheme for the phase-field evolution is proposed to effectively model solidification coupled with melt flow and thermosolutal convection–diffusion with improved numerical stability and accuracy, (2) convenient diffuse interface treatments are implemented for the melt flow and thermosolutal transport which can be applied to the entire domain without tracking the interface, and (3) the evolution of the phase field, flow, concentration, and temperature fields on the level of microscopic distribution functions in the LB schemes is decoupled with a multiple-time-scaling strategy (despite their full physical coupling), thus solidification at high Lewis numbers (ratios of the liquid thermal to solutal diffusivities) can be conveniently modeled. The applicability and accuracy of the present PFM/LBM model are verified with four numerical tests including isothermal, iso-solutal and thermosolutal convection–diffusion problems, where excellent agreement in terms of phase-field and thermosolutal distributions and dendritic tip growth velocity and radius with those reported in the literature is demonstrated. The proposed PFM/LBM model can be an attractive and powerful tool for large-scale dendritic growth simulations given the high scalability of the LBM

    Similar works