Source detection on networks using spatial temporal graph convolutional networks

Abstract

Detecting the source of an outbreak cluster during a pandemic like COVID-19 can provide insights into the transmission process, associated risk factors, and help contain the spread. In this work we study the problem of source detection from multiple snapshots of spreading on an arbitrary network structure. We use a spatial temporal graph convolutional network based model (SD-STGCN) to produce a source probability distribution, by fusing information from temporal and topological spaces. We perform extensive experiments using popular compartmental simulation models over synthetic networks and empirical contact networks. We also demonstrate the applicability of our approach with real COVID-19 case data

    Similar works