Friction pressure loss in micro channel rarefied gas flows

Abstract

Strujanje gasa kroz mikrokanale prisutno je u mikro elektro mehaničkim sistemima (MEMS). Dimenzije mikrokanala su reda veličine µm, pa dužina slobodnog puta molekula nije zanemarljivo mala. Efekat razređenosti dolazi do izražaja, pa je potrebno uzeti u obzir granične uslove klizanja na zidu. U ovom radu dobijena su rešenja za dvodimenzijsko, izotermsko, stišljivo strujanje gasa kroz mikrokanale sporo promenljivog poprečnog preseka, pri veoma malim vrednostima Mach-ovog broja. Korišćeni su granični uslovi klizanja drugog reda, što je uslovilo korišćenje i jednačina količine kretanja drugog reda, tj. Burnettovih jednačina. Pokazalo se da se za pomenute uslove strujanja one svode na Navier-Stokes-ove. U radu je prikazano analitičko rešenje za slučajeve strujanja gasa kada je vrednost Reynolds-ovog broja veća, pa osim razređenosti do izražaja dolazi i uticaj inercije. Za takve uslove strujanja dobijena su rešenja za polje pritiska i brzine, kao i analitički izrazi za određivanje faktora trenja duž kanala i njegove srednje vrednosti. Iz njih se vidi da pri strujanju razređenog gasa faktor trenja zavisi i od Reynolds-ovog i od Knudsen-ovog broja.Gas flows through micro-channels are encountered in many applications of Micro-Electro-Mechanical Systems (MEMS) Dimensions of the MEMS are within µm range, which means that rarefaction must be considered. It is common to use slip conditions at the wall and continuum equations for solving these problems. In this paper isothermal, compressible and subsonic gas flows through micro channels with slowly varying cross sections are analyzed. In order to provide a higher accuracy, the second order boundary conditions are used. This approach requires the higher order momentum equation, i.e. the Burnett equation. Solutions are obtained for higher Reynolds number values when the inertia effect is important together with the rarefaction effect. For such flow conditions analytical relations for pressure and velocity fields are presented. Also, analytical expressions for the friction factor change along a micro channel with constant cross section and for the average friction factor are obtained. The derived relations show that the friction factor depends not only on the Reynolds number, but also on the Knudsen number

    Similar works