A Parallel Monte-Carlo Tree Search-Based Metaheuristic For Optimal Fleet Composition Considering Vehicle Routing Using Branch & Bound

Abstract

In this paper, a Monte-Carlo Tree Search (MCTS)-based metaheuristic is developed that guides a Branch & Bound (B&B) algorithm to find the globally optimal solution to the heterogeneous fleet composition problem while considering vehicle routing. Fleet Size and Mix Vehicle Routing Problem with Time Windows (FSMVRPTW). The metaheuristic and exact algorithms are implemented in a parallel hybrid optimization algorithm where the metaheuristic rapidly finds feasible solutions that provide candidate upper bounds for the B&B algorithm which runs simultaneously. The MCTS additionally provides a candidate fleet composition to initiate the B&B search. Experiments show that the proposed approach results in significant improvements in computation time and convergence to the optimal solution.Comment: Submitted to the IEEE Intelligent Vehicles Symposium 202

    Similar works

    Full text

    thumbnail-image

    Available Versions