Phonon-mediated spin dynamics in a two-electron double quantum dot under a phonon temperature gradient

Abstract

We have theoretically studied phonon-mediated spin-flip processes of electrons in a GaAs double quantum dot (DQD) holding two spins, under a phonon temperature gradient over the DQD. Transition rates of inter-dot phonon-assisted tunnel processes and intra-dot spin-flip processes involving spin triplet states are formalized by the electron-phonon interaction accompanied with the spin-orbit interaction. The calculations of the spin-flip rates and the occupation probabilities of the spin-states in the two-electron DQD with respect to the phonon temperature difference between the dots are quantitatively consistent with our previous experiment. This theoretical study on the temperature gradient effect onto spins in coupled QDs would be essential for understanding spin-related thermodynamic physics

    Similar works

    Full text

    thumbnail-image

    Available Versions