CORE
🇺🇦
make metadata, not war
Services
Research
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
The Optimal Noise in Noise-Contrastive Learning Is Not What You Think
Authors
Omar Chehab
Alexandre Gramfort
Aapo Hyvärinen
Publication date
1 January 2022
Publisher
Association For Uncertainty in Artificial Intelligence (AUAI)
Abstract
Publisher Copyright: © 2022 Proceedings of the 38th Conference on Uncertainty in Artificial Intelligence, UAI 2022. All right reserved.Learning a parametric model of a data distribution is a well-known statistical problem that has seen renewed interest as it is brought to scale in deep learning. Framing the problem as a self-supervised task, where data samples are discriminated from noise samples, is at the core of state-of-the-art methods, beginning with Noise-Contrastive Estimation (NCE). Yet, such contrastive learning requires a good noise distribution, which is hard to specify; domain-specific heuristics are therefore widely used. While a comprehensive theory is missing, it is widely assumed that the optimal noise should in practice be made equal to the data, both in distribution and proportion; this setting underlies Generative Adversarial Networks (GANs) in particular. Here, we empirically and theoretically challenge this assumption on the optimal noise. We show that deviating from this assumption can actually lead to better statistical estimators, in terms of asymptotic variance. In particular, the optimal noise distribution is different from the data's and even from a different family.Peer reviewe
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Helsingin yliopiston digitaalinen arkisto
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:helda.helsinki.fi:10138/35...
Last time updated on 12/03/2023