Ionien heijastuminen Maan kvasi-poikittaisella keulasokilla Vlasiator-simulaatiossa

Abstract

A stream of charged particles known as the solar wind constantly flows with supersonic speed in our solar system. As the supersonic solar wind encounters Earth's magnetic field, a bow shock forms where the solar wind is compressed, heated and slowed down. Not all ions of the solar wind pass through the shock but rather a portion are reflected back upstream. What happens to the reflected ions depends on the magnetic field geometry of the shock. In the case where the angle between the upstream magnetic field and the shock normal vector is small, the reflected ions follow the magnetic field lines upstream and form a foreshock region. In this case the shock is called quasi-parallel. In the case of a quasi-perpendicular shock, where the angle is large, the reflected ions gyrate back to the shock, accelerated by the convection electric field. Upon returning to the shock, the ions have more energy and either pass through the shock or are reflected again, repeating the process. Ion reflection is important for accelerating ions in shocks. In this work we study the properties and ion reflection of the quasi-perpendicular bow shock in Vlasiator simulations. Vlasiator is a plasma simulation which models the interaction between solar wind and the Earth's magnetic field. The code simulates the dynamics of plasma using a hybrid-Vlasov model, where ions are represented as velocity distribution functions (VDF) and electrons as magnetohydrodynamic fluid. Two Vlasiator runs are used in this work. The ion reflection is studied by analysing VDFs at various points in the quasi-perpendicular shock. The analysis is performed with reflections in multiple different frames. A virtual spacecraft is placed in the simulation to study shock properties and ion dynamics, such as the shock potential and ion reflection efficiency. These are compared to spacecraft observations and other simulations to test how well Vlasiator models the quasi-perpendicular bow shock. We find that the ion reflection follows a model for specular reflection well in all tested frames, especially in the plane perpendicular to the magnetic field. In addition, the study was extended to model second specular reflections which were also observed. We conclude that the ions in Vlasiator simulations are nearly specularly reflected. The properties of the quasi-perpendicular bow shock are found to be in quantitative agreement with spacecraft observations. Ion reflection efficiency is found to match observations well. Shock potential investigations revealed that spacecraft observations may have large uncertainties compared to the real shock potential

    Similar works