Deep Learning for Predicting Congestive Heart Failure

Abstract

Congestive heart failure (CHF) is one of the most debilitating cardiac disorders. It is a costly disease in terms of both lives and financial outlays, given the high rate of hospital re-admissions and mortality. Heart failure (HF) is notoriously difficult to identify on time, and is frequently accompanied by additional comorbidities that further complicate diagnosis. Many decision support systems (DSS) have been developed to facilitate diagnosis and to raise the standard of screening and monitoring operations, even for non-expert staff. This is confirmed in the literature by records of highly performing diagnosis-aid systems, which are unfortunately not very relevant to expert cardiologists. In order to assist cardiologists in predicting the trajectory of HF, we propose a deep learning-based system which predicts severity of disease progression by employing medical patient history. We tested the accuracy of four models on a labeled dataset, composed of 1037 records, to predict CHF severity and progression, achieving results comparable to studies based on much larger datasets, none of which used longitudinal multi-class prediction. The main contribution of this work is that it demonstrates that a fairly complicated approach can achieve good results on a medium size dataset, providing a reasonably accurate means of determining the evolution of CHF well in advance. This potentially constitutes a significant aid for healthcare managers and expert cardiologists in designing different therapies for medication, healthy lifestyle changes and quality of life (QoL) management, while also promoting allocation of resources with an evidence-based approach. © 2022 by the authors

    Similar works