CORE
🇺🇦
make metadata, not war
Services
Research
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Regulation of FcεRI Signaling in Mast Cells by G Protein-Coupled Receptor Kinase 2 and its RH Domain
Authors
H. Ali
K. Gupta
N. Parameswaran
H. Subramanian
Publication date
1 January 2014
Publisher
ScholarlyCommons
Abstract
Agonist-induced phosphorylation of G protein-coupled receptors (GPCRs) by GPCR kinases (GRKs) promotes their desensitization and internalization. Here, we sought to determine the role of GRK2 on FcεRI signaling and mediator release in mast cells. The strategies utilized included lentiviral shRNA-mediated GRK2 knockdown, GRK2 gene deletion (GRK2flox/flox/cre recombinase) and overexpression of GRK2 and its regulator of G protein signaling homology (RH) domain (GRK2-RH). We found that silencing GRK2 expression caused ∼50% decrease in antigen-induced Ca2+ mobilization and degranulation but resulted in ablation of cytokine (IL-6 and IL-13) generation. The effect of GRK2 on cytokine generation does not require its catalytic activity but is mediated via the phosphorylation of p38 and Akt. Overexpression of GRK2 or its RH domain (GRK2-RH) enhanced antigen-induced mast cell degranulation and cytokine generation without affecting the expression levels of any of the FcεRI subunits (α, β, and γ). GRK2 or GRK2-RH had no effect on antigen-induced phosphorylation of FcεRIγ or Src but enhanced tyrosine phosphorylation of Syk. These data demonstrate that GRK2 modulates FcεRI signaling in mast cells via at leasttwomechanisms. OneinvolvesGRK2-RHand modulates tyrosine phosphorylation of Syk, and the other is mediated via the phosphorylation of p38 and Akt. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
ScholarlyCommons@Penn
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:repository.upenn.edu:denta...
Last time updated on 04/03/2023