Numerical Solutions to the Robin Inverse Problem With Nonnegativity Constraints

Abstract

We present iterative numerical methods for solving the inverse problem of recovering the nonnegative Robin coefficient from partial boundary measurement of the solution to the Laplace equation. Based on the boundary integral equation formulation of the problem, nonnegativity constraints in the form of a penalty term are incorporated conveniently into least-squares iteration schemes for solving the inverse problem. Numerical implementation and examples are presented to illustrate the effectiveness of this strategy in improving recovery results

    Similar works

    Full text

    thumbnail-image

    Available Versions