Water is omnipresent and plays a decisive role in a myriad of processes.However, it is often found hidden in tiny cells, pores, or channels. Insuch cases, the usual “bulk” features of water are modified by thelimited available space and the interactions of individual moleculeswith the confining material. Elucidating the properties of water in suchconfined states is critical and general understanding can only beachieved through models. While water confined in model hard materialssuch as carbon nanotubes is well documented, we found that there existno general model to study water confined in soft materials, althoughthis has been an active research topic for decades and despite thenumerous models specific to one biomolecule or polymer that have beendeveloped. In this thesis, we present a numerical model of waterconfined in soft self-assembled environments, and we provide anunderstanding of how the interplay between water and the confiningmatrix affects the structure of the assemblies and transport propertiesof water. Our model confining matrix is composed of ionic surfactants.This versatile model is able to self-assemble to a wide variety ofconfining geometries.We focus on the role of interfaces in shaping the nanometer scalestructure, and nanosecond scale transport properties. This work is adeparture from the traditional approach to the problem of transport ofwater confined in soft nanomaterials. We show that the usual hypothesisof diffusive water transport does not hold due to trapping of moleculesat the interface with the confining matrix. Instead, we support apicture where transport is sub-diffusive, and we highlight the role ofthe length-scale of the confinement and of its topological features. Wefind that this rationale explains experimental results for waterconfined in synthetic materials, and that it is compatible with recentadvances in the understanding of biological water.L'eau est partout et joue un rôle déterminant dans une multitude deprocessus. Cependant, on la trouve souvent au sein de minusculescellules, pores, ou canaux. En de tels cas, les proprietés“macroscopiques” de l'eau sont modifiées par les restrictions spatialeset les interactions entre les molécules d'eau et le matériau confinant.Elucider les propriétés de l'eau en confinement est crucial, et unecompréhension générale peut seulement être obtenue à traversl'utilisation de modèles. Alors que l'eau confinée dans des matériauxdurs tels que les nanotubes de carbone est bien documentée, nous n'avonspas trouvé de modèle général pour l'étude de l'eau confinée a desmatériaux mous, et ce en dépit de décénies de recherches sur de nombreuxmodèles spécifiques à une biomolécule ou un polymère en particulier.Dans cette thèse, nous présentons un modèle numérique d'eau confinéedans des géométries molles, générées par auto-assemblage. Nouscomprenons la manière dont les interactions réciproques entre l'eau etla matrice confinante déterminent la structure des assemblages et lespropriétés de transport de l'eau. Nous avons choisi un modèle desurfactant ioniques, matériaux très versatiles qui sont capables des'auto-assembler en diverses géométries confinantes.Nous nous concentrons sur l'effet des interfaces sur la formation de lananostructure et sur les propriétés de transport à l'échelle de lananoseconde. Nous nous distancons de l'approche traditionnelle auproblème du transport de l'eau dans des nanomatériaux. Nous montrons quel'hypothèse habituelle du transport diffusif est invalide car la matriceconfinante piège les molécules d'eau à l'interface. Nous proposons deremplacer cette hypothèse par celle du transport sous-diffusif, et nousmettons en évidence le rôle de l'échelle de taille et des propriétéstopologiques du confinement. Nous montrons que cette approche expliquedes résultats expérimentaux pour léau confinée dans des matériaux desynthèse, et qu'elle est compatible avec les développements récents liésà l'eau biologique