GAN LIGHT EMISSION CONTROLLED DC-DC CONVERTER

Abstract

This work demonstrates the very first implementation of electroluminescence from a gallium nitride vertical diode as a feedback mechanism for real-time current control of a power converter. Current estimation via electroluminescence provides a galvanically isolated sensor capability that is not susceptible to electromagnetic interference, which is inherently produced in switch mode power supplies. The light feedback is converted to an electrical signal that is further digitally filtered to construct a 3D current calibration surface. This surface converts duty cycle and light signal intensity into a real-time current estimation utilized as a feedback parameter in a buck converter control system. The accuracy of current estimation is shown to be within 5% of steady-state current over various load conditions. Transient-state response was also demonstrated for step changes in commanded current and voltage within the power converter. Methods of increasing accuracy and reducing current estimation delay time are discussed.Lieutenant, United States NavyApproved for public release. Distribution is unlimited

    Similar works