Influence of Rainfall Intensity on the Stability of Unsaturated Soil Slope: Case Study of R523 Road in Thulamela Municipality, Limpopo Province, South Africa

Abstract

The purpose of this paper was to analyze the impact of extreme rainfall on the recurrence of slope instability using the Thulamela Municipality roads (R523) as a case study. To this end, the historical rainfall data of the area of study were analyzed between 1988 and 2018. The results show that a significant increase in rainfall is usually experienced in the summer months of December and January. Following this, the factor of safety (FoS) of slopes of silt clay, clay, and clay loam soils were estimated using the SLIDE simulator (Numerical software “Finite Element Method (FEM)”) under sunny to rainy conditions of the area. A complementary model, FLACSlope (Numerical software “Finite Difference Method (FDM)”), was utilized to simulate FoS and pore water pressure in sunny and rainy conditions of the area. Simulation results show that extreme rainfall has the ability to reduce the shear strength and resistance of the soil slope material. This may explain the recurrent landslides noted in the area. Finally, the water pore pressure has been simulated to increase with the increased water table, which generally pushes the soil particles apart and reduces the stress between the particles resulting in soil slope failure. Extreme rainfall alters the phase of the material solid in a manner that may require further research for a better understanding

    Similar works