Editorial: Advances in deep learning methods for medical image analysis

Abstract

The rapid development of artificial intelligence (AI) technology is leading many innovations in the medical field and is playing a major role in establishing objective, consistent, and efficient medical environments with large-scale data. Deep learning represented by convolutional neural networks has achieved remarkable performance improvement in medical image processing fields such as image segmentation, registration, and enhancement. Furthermore, AI technology with deep learning is pioneering medical applications, such as lesion detection, differential diagnosis, disease prognosis, and surgical planning. More advanced AI technologies, such as transformers with self-attention mechanisms, allowing for learning global dependencies, have been widely applied, which further enhanced the capability of deep learning to analyze medical images. However, despite the remarkable advances in deep learning, many challenges remain. For example, when training data are biased or incomplete, deep learning models may fail to achieve the good generalization capability required to solve real-world problems. In addition, the limitations of deep learning models in interpreting results, and misunderstandings of their intended uses and hypotheses make it difficult for AI to gain trust in healthcare settings. In this regard, disease-specific neural networks, generalized learning methods, high-quality training data, and external evaluation based on testable hypotheses can ensure the reliability of medical AI technologies for humans

    Similar works