Enhanced frequency management for automatic HF radio communication systems

Abstract

The work described in this thesis aims to enhance the frequency management of automatic high frequency (HF) radio communication systems. During the research programme two new frequency management tools were developed; a chirpsounder monitoring tool to provide accuracy enhancement information for propagation prediction programs and an algorithm designed to allow optimisation of signal formats, so that in-band interference is avoided and the overall system throughput rate is increased. Two new HF communication system architectures are presented, which use system design and programming methodologies derived from the fields of artificial intelligence and computer networks.The characteristics of the HF band are presented from a communicator's viewpoint, rather than the generalised, technical approach normally associated with such reviews. The methods employed by current HF communication systems to overcome the inherent time and frequency variability of HF channels are presented in the form of reviews of propagation, natural noise and co-channel interference prediction methods, embedded real-time channel evaluation algorithms and HF communications system architectures. The inadequacies of these current techniques are analysed. The eradication of their shortcomings is the main objective of the work described in the thesis.The short-term inaccuracies associated with current propagation analysis procedures can limit the performance of automatic HF communication systems. An accuracy enhancement methodology is proposed which makes use of measurements made on oblique chirpsounder transmitters. In order to provide accuracy enhancement data, a chirpsounder-based, propagation monitor was constructed. Its implementation and trials are described and methods of using its output to enhance prediction model accuracy are discussed. Ways in which its performance may be improved are detailed.The theory of a technique, termed "template correlation", which provides automatic HF communication systems with signal format adaptation data in order to enable them to avoid in-band interference, is presented. The objective of this work is to enhance the error-free capacity of a channel via adaptation of the signal. The results of computer simulations and laboratory bench trials of template correlation are presented. Enhancements of the technique in the light of the trials results are included.Two proposed design methodologies for automatic HF communication systems are described. The first uses many of the frequency management tools associated with current automatic systems and it combines the information from these using a blackboard-based expert system architecture. The second proposed design is more conceptual than the first. An inductive expert system is employed to produce rules describing the ways in which an automatic HF system should respond to certain path conditions. Examples of how such a system might function are given.The single, most important factor which has enabled the techniques described in this thesis to be feasible is the availability of cheap but powerful microprocessors. Thus the overall philosophy of the work is to improve the performance of automatic HF communication systems via the incorporation of processing power and "intelligent software" into the communication system's terminals

    Similar works