The effect of moist layer location on the stability of trapped gravity waves in an almost saturated atmosphere

Abstract

The stability characteristics of trapped gravity waves, generated by an isothermal bounded tanh (z) velocity profile in the presence of a saturated finite layer, are studied. The saturated layer is introduced at different levels above the inlection point and the variations of moisture content, layer thickness and distance from the origin are examined. The growthyrates and phase speeds of the unstable modes are obtained by solving numerically the equations of motion in the linear, inviscid, Boussinesq limit, via the technique of Lalas and Einaudi (1976). It is shown that the presence of the saturated layer can significantly affect the stability characteristics of the waves. inereases in moisture, layer thickness and distance of the layer from the inflection point are found to amplify the wave response because the saturated layer behaves as a top boundtry to the shear flow. The presence of such effective boundaries is found to stabilize short wavelengths and destabilize longer wavelengths. Finally, an application of the results to a rainband case produces values of the wave parameters in good agreement with the observed ones. © 1991 Springer-Verlag

    Similar works