CORE
🇺🇦
make metadata, not war
Services
Research
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Interpolation theory and first-order boundary value problems
Authors
W.N. Everitt Poulkou, A.
Publication date
1 January 2004
Publisher
Abstract
This paper discusses the connection between Kramer analytic kernels derived from first-order, linear, ordinary boundary value problems represented by self-adjoint differential operators and one form of the Lagrange interpolation formula, and treats the dual formulation of the sampling process, that of interpolation. In following the kernel construction results obtained by the authors in a previous paper in 2002, the results in this successor paper complete the aimed project by showing that each of these Kramer analytic kernels has an associated analytic interpolation function to give the Lagrange interpolation series. © 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Similar works
Full text
Available Versions
Pergamos : Unified Institutional Repository / Digital Library Platform of the National and Kapodistrian University of Athens
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:lib.uoa.gr:uoadl:3066378
Last time updated on 10/02/2023