CORE
🇺🇦
make metadata, not war
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Risk assessment of diesel exhaust and lung cancer: Combining human and animal studies after adjustment for biases in epidemiological studies
Authors
X. Pedeli Hoek, G. Katsouyanni, K.
Publication date
1 January 2011
Publisher
Abstract
Background: Risk assessment requires dose-response data for the evaluation of the relationship between exposure to an environmental stressor and the probability of developing an adverse health effect. Information from human studies is usually limited and additional results from animal studies are often needed for the assessment of risks in humans. Combination of risk estimates requires an assessment and correction of the important biases in the two types of studies. In this paper we aim to illustrate a quantitative approach to combining data from human and animal studies after adjusting for bias in human studies. For our purpose we use the example of the association between exposure to diesel exhaust and occurrence of lung cancer. Methods. Firstly, we identify and adjust for the main sources of systematic error in selected human studies of the association between occupational exposure to diesel exhaust and occurrence of lung cancer. Evidence from selected animal studies is also accounted for by extrapolating to average ambient, occupational exposure concentrations of diesel exhaust. In a second stage, the bias adjusted effect estimates are combined in a common effect measure through meta-analysis. Results: The random-effects pooled estimate (RR) for exposure to diesel exhaust vs. non-exposure was found 1.37 (95% C.I.: 1.08-1.65) in animal studies and 1.59 (95% C.I.: 1.09-2.10) in human studies, whilst the overall was found equal to 1.49 (95% C.I.: 1.21-1.78) with a greater contribution from human studies. Without bias adjustment in human studies, the pooled effect estimate was 1.59 (95% C.I.: 1.28-1.89). Conclusions: Adjustment for the main sources of uncertainty produced lower risk estimates showing that ignoring bias leads to risk estimates potentially biased upwards. © 2011 Pedeli et al; licensee BioMed Central Ltd
Similar works
Full text
Available Versions
Pergamos : Unified Institutional Repository / Digital Library Platform of the National and Kapodistrian University of Athens
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:lib.uoa.gr:uoadl:3058186
Last time updated on 10/02/2023