Controlling the
amount of solar energy entering the building, reducing the energy needs of
buildings is a measure that can be taken to combat global warming. For this
purpose, the windows are covered with special thin film which is effective on
energy conservation. There are a lot of application for intelligent coatings,
including greenhouses, sun protectors, housing, offices and automobile
windshields. The development of such coatings provides environmental benefits
leading to considerable savings in energy costs [1]. Researches have led to the
development of new generation materials. Developments in materials technology
gained extra functions that cause the term "intelligent material" to
give the desired response to some conditions such as temperature, light, etc.
Improving on produce a new generation of thermochromic intelligent glasses that
control the light and heat energy by changing the optical properties depending
on the changing temperature. In this study, it is aimed to develop innovative
coating materials for applications which will reduce external dependence on
glass used especially in the construction sector, increase competitiveness at
international level and support energy efficiency. The grain size of the
thermochromic pigments, which change color at 33°C green, black at 45°C, and
blue at 65°C, were measured and TG/DTA analyzes were carried out. Pigments were
examined with USB digital microscope and color measurements were made using
spectrophotometer. The color change of thermochromic pigments with increasing
and decreasing temperature was examined by infrared thermometer. Characterization
studies were carried out by X-ray diffraction analysis and scanning electron
microscopy analysis techniques