CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
Genome wide analysis of circulating miRNAs in growth hormone secreting pituitary neuroendocrine tumor patients’ plasma
Authors
Inga Balcere
Austra Breiksa
+14 more
Ilze Konrade
Helena Daiga Litvina
Rasa Liutkeviciene
Ilona Madrika
Kaspars Megnis
Jurijs Nazarovs
Helvijs Niedra
Raitis Peculis
Mihails Romanovs
Vita Rovite
Jelizaveta Sokolovska
Liva Steina
Janis Stukens
Alvita Vilkevicute
Publication date
9 September 2022
Publisher
'Frontiers Media SA'
Doi
View
on
PubMed
Abstract
Funding Information: The financial support given by NSFC with Grant No. 11874034, Taishan Scholar Program of Shandong No. ts201712054, and Shandong Science and Technology Enterprise Innovation Capacity Enhancement Project (2021TSGC1036) are highly appreciated for this research. Publisher Copyright: Copyright © 2022 Niedra, Peculis, Litvina, Megnis, Madrika, Balcere, Romanovs, Steina, Stukens, Breiksa, Nazarovs, Sokolovska, Liutkeviciene, Vilkevicute, Konrade and Rovite.Background: Circulating plasma miRNAs have been increasingly studied in the field of pituitary neuroendocrine tumor (PitNET) research. Our aim was to discover circulating plasma miRNAs species associated with growth hormone (GH) secreting PitNETs versus assess how the plasma levels of discovered miRNA candidates are impacted by SSA therapy and whether there is a difference in their levels between GH secreting PitNETs versus other PitNET types and healthy individuals. Design: We compared plasma miRNA content and levels before and after surgery focusing on GH secreting PitNET patients. Selected miRNA candidates from our data and literature were then tested in a longitudinal manner in somatostatin analogues (SSA) treatment group. Additionally, we validated selected targets in an independent GH secreting PitNET group. Methods: miRNA candidates were discovered using the whole miRNA sequencing approach and differential expression analysis. Selected miRNAs were then analyzed using real-time polymerase chain reaction (qPCR). Results: Whole miRNA sequencing discovered a total of 16 differentially expressed miRNAs (DEMs) in GH secreting PitNET patients’ plasma 24 hours after surgery and 19 DEMs between GH secreting PitNET patients’ plasma and non-functioning (NF) PitNET patients’ plasma. Seven miRNAs were selected for further testing of which miR-625-5p, miR-503-5p miR-181a-2-3p and miR-130b-3p showed a significant downregulation in plasma after 1 month of SSA treatment. mir-625-5p was found to be significantly downregulated in plasma of GH secreting PitNET patients vs. NF PitNET patients. miR-625-5p alongside miR-130b-3p were also found to be downregulated in GH PitNETs compared to healthy individuals. Conclusions: Our study suggests that expression of plasma miRNAs miR-625-5p, miR-503-5p miR-181a-2-3p and miR-130b-3p in GH secreting PitNETs is affected by SSA treatment. Additionally, miR-625-5p can distinguish GH secreting PitNETs from other PitNET types and healthy controls warranting further research on these miRNAs for treatment efficacy.publishersversionPeer reviewe
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
PubMed Central
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:pubmedcentral.nih.gov:9500...
Last time updated on 14/11/2022
Riga Stradins university
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:dspace.rsu.lv:123456789/10...
Last time updated on 07/03/2023