On solving the MAX-SAT using sum of squares

Abstract

We consider semidefinite programming (SDP) approaches for solving the maximum satisfiability problem (MAX-SAT) and the weighted partial MAX-SAT. It is widely known that SDP is well-suited to approximate the (MAX-)2-SAT. Our work shows the potential of SDP also for other satisfiability problems, by being competitive with some of the best solvers in the yearly MAX-SAT competition. Our solver combines sum of squares (SOS) based SDP bounds and an efficient parser within a branch & bound scheme. On the theoretical side, we propose a family of semidefinite feasibility problems, and show that a member of this family provides the rank two guarantee. We also provide a parametric family of semidefinite relaxations for the MAX-SAT, and derive several properties of monomial bases used in the SOS approach. We connect two well-known SDP approaches for the (MAX)-SAT, in an elegant way. Moreover, we relate our SOS-SDP relaxations for the partial MAX-SAT to the known SAT relaxations.Comment: 26 pages, 5 figures, 8 tables, 2 appendix page

    Similar works

    Full text

    thumbnail-image

    Available Versions