Molecular-Level Understanding of the Ro-vibrational Spectra of N2_2O in Gaseous, Supercritical and Liquid SF6_6 and Xe

Abstract

The transition between the gas-, supercritical-, and liquid-phase behaviour is a fascinating topic which still lacks molecular-level understanding. Recent ultrafast two-dimensional infrared spectroscopy experiments suggested that the vibrational spectroscopy of N2_2O embedded in xenon and SF6_6 as solvents provides an avenue to characterize the transitions between different phases as the concentration (or density) of the solvent increases. The present work demonstrates that classical molecular dynamics simulations together with accurate interaction potentials allows to (semi-)quantitatively describe the transition in rotational vibrational infrared spectra from the P-/R-branch lineshape for the stretch vibrations of N2_2O at low solvent densities to the Q-branch-like lineshapes at high densities. The results are interpreted within the classical theory of rigid-body rotation in more/less constraining environments at high/low solvent densities or based on phenomenological models for the orientational relaxation of rotational motion. It is concluded that classical MD simulations provide a powerful approach to characterize and interpret the ultrafast motion of solutes in low to high density solvents at a molecular level

    Similar works

    Full text

    thumbnail-image

    Available Versions