Turing instability in a diffusive predator-prey model with multiple Allee effect and herd behavior

Abstract

Diffusion-driven instability and bifurcation analysis are studied in a predator-prey model with herd behavior and quadratic mortality by incorporating multiple Allee effect into prey species. The existence and stability of the equilibria of the system are studied. And bifurcation behaviors of the system without diffusion are shown. The sufficient and necessary conditions for Turing instability occurring are obtained. And the stability and the direction of Hopf and steady state bifurcations are explored by using the normal form method. Furthermore, some numerical simulations are presented to support our theoretical analysis. We found that too large diffusion rate of prey prevents Turing instability from emerging. Finally, we summarize our findings in the conclusion

    Similar works

    Full text

    thumbnail-image

    Available Versions