Generating diagnostic profiles of cognitive decline and dementia using magnetoencephalography

Abstract

Accurate identification of the underlying cause(s) of cognitive decline and dementia is challenging due to significant symptomatic overlap between subtypes. This study presents a multi-class classification framework for subjects with subjective cognitive decline, mild cognitive impairment, Alzheimer's disease, dementia with Lewy bodies, fronto-temporal dementia and cognitive decline due to psychiatric illness, trained on source-localized resting-state magnetoencephalography data. Diagnostic profiles, describing probability estimates for each of the 6 diagnoses, were assigned to individual subjects. A balanced accuracy rate of 41% and multi-class area under the curve value of 0.75 were obtained for 6-class classification. Classification primarily depended on posterior relative delta, theta and beta power and amplitude-based functional connectivity in the beta and gamma frequency band. Dementia with Lewy bodies (sensitivity: 100%, precision: 20%) and Alzheimer's disease subjects (sensitivity: 51%, precision: 90%) could be classified most accurately. Fronto-temporal dementia subjects (sensitivity: 11%, precision: 3%) were most frequently misclassified. Magnetoencephalography biomarkers hold promise to increase diagnostic accuracy in a noninvasive manner. Diagnostic profiles could provide an intuitive tool to clinicians and may facilitate implementation of the classifier in the memory clinic

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 12/10/2022