The effect of tooling deformation on process control in multistage metal forming

Abstract

Forming of high-strength steels leads to high loads within the production process. In multistage metal forming, the loads in different process stages are transferred to the other stages through elastic deformation of the stamping press. This leads to interactions between process steps, affecting the process forces in each stage and the final geometry of the product. When force measurements are used for control of the metal forming process, it is important to understand these interactions. In his work, interactions within an industrial multistage forming process are investigated. Cutting, deepdrawing, forging and bending steps are performed in the production process. Several test runs of a few thousand products each were performed to gather information about the process. Statistical methods are used to analyze the measurements. Based on the cross-correlation between the force measurements of different stages, it can be shown that the interactions between the process steps are caused by elastic deformation of the tooling and the stamping press

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 14/10/2017