Control of Electron Wave Packets Close to the Continuum Threshold Using Near-Single-Cycle THz Waveforms

Abstract

The control of low-energy electrons by carrier-envelope-phase-stable near-single-cycle THz pulses is demonstrated. A femtosecond laser pulse is used to create a temporally localized wave packet through multiphoton absorption at a well defined phase of a synchronized THz field. By recording the photoelectron momentum distributions as a function of the time delay, we observe signatures of various regimes of dynamics, ranging from recollision-free acceleration to coherent electron-ion scattering induced by the THz field. The measurements are confirmed by three-dimensional time-dependent Schrödinger equation simulations. A classical trajectory model allows us to identify scattering phenomena analogous to strong-field photoelectron holography and high-order above-threshold ionization

    Similar works

    Full text

    thumbnail-image

    Available Versions