Wearable fusion system for assessment of motor function in lesion-symptom mapping studies

Abstract

Lesion-symptom mapping studies are a critical component of addressing the relationship between brain and behaviour. Recent developments have yielded significant improvements in the imaging and detection of lesion profiles, but the quantification of motor outcomes is still largely performed by subjective and low-resolution standard clinical rating scales. This mismatch means than lesion-symptom mapping studies are limited in scope by scores which lack the necessary accuracy to fully quantify the subcomponents of motor function. The first study conducted aimed to develop a new automated system of motor function which addressed the limitations inherent in the clinical rating scales. A wearable fusion system was designed that included the attachment of inertial sensors to record the kinematics of upper extremity. This was combined with the novel application of mechanomyographic sensors in this field, to enable the quantification of hand/wrist function. Novel outputs were developed for this system which aimed to combine the validity of the clinical rating scales with the high accuracy of measurements possible with a wearable sensor system. This was achieved by the development of a sophisticated classification model which was trained on series of kinematic and myographic measures to classify the clinical rating scale. These classified scores were combined with a series of fine-grained clinical features derived from higher-order sensor metrics. The developed automated system graded the upper-extremity tasks of the Fugl-Meyer Assessment with a mean accuracy of 75\% for gross motor tasks and 66\% for the wrist/hand tasks. This accuracy increased to 85\% and 74\% when distinguishing between healthy and impaired function for each of these tasks. Several clinical features were computed to describe the subcomponents of upper extremity motor function. This fine-grained clinical feature set offers a novel means to complement the low resolution but well-validated standardised clinical rating scales. A second study was performed to utilise the fine-grained clinical feature set calculated in the previous study in a large-scale region-of-interest lesion-symptom mapping study. Statistically significant regions of motor dysfunction were found in the corticospinal tract and the internal capsule, which are consistent with other motor-based lesion-symptom mapping studies. In addition, the cortico-ponto-cerebellar tract was found to be statistically significant when testing with a clinical feature of hand/wrist motor function. This is a novel finding, potentially due to prior studies being limited to quantifying this subcomponent of motor function using standard clinical rating scales. These results indicate the validity and potential of the clinical feature set to provide a more detailed picture of motor dysfunction in lesion-symptom mapping studies.Open Acces

    Similar works