The unscented transform as a method to assess circuit variability for emergent technologies

Abstract

Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Elétrica, 2019.O presente trabalho propõe a transformada da incerteza (UT) como uma alternativa ao método de Monte Carlo (MC) para avaliar o funcionamento sob variabilidade de circuitos elétricos baseados em tecnologias emergentes. É mostrado que a aproximação discreta pela UT de funções de distribuição de probabilidade de variáveis aleatórias pode ser realizada a partir da quadratura Gaussiana. A tecnologia de nanotubos de carbono (CNT) possibilita a criação de circuitos de rádio frequência de comprimento moderado do canal e densidade de nanotubos. Como exemplo de aplicação, são comparadas as previsões de rendimento utilizando os métodos MC e UT de osciladores em anel construídos a partir de buffers de lógica em modo corrente. Apesar do escalonamento exponencial, este trabalho mostra evidências de sua aplicabilidade para a análise de circuitos menores de benchmark. Para circuitos maiores, a natureza determinística da UT permite a exploração de redundâncias inerentes ao circuito. Por fim, são apontados parâmetros da tecnologia com distribuição não-normais, que requerem novos algoritmos para computar a discretização utilizando a UT.The unscented transform (UT) is proposed as an alternative to the Monte Carlo (MC) method for assessing performance variability of electronic circuits based on emergent technologies. We show that the discrete UT approximation of a continuous probability distribution of random variables can be solved by Gaussian quadrature. Carbon nanotube (CNT) technology enables radio frequency circuits at moderate channel length and semiconducting tube density. As an application example, we compare UT and MC yield predictions for CNTFET current-mode-logic ring oscillators. Despite of the exponential scaling of the computational effort with system size, the UT proves to be a powerful tool for the analysis of small benchmark circuits. For larger circuits the deterministic nature of the UT allows to explore redundancies. Finally, we point out that technology parameters are not necessarily normal distributed, which calls for new algorithms to compute the UT discretization

    Similar works