Resolvent kernels that constitute an approximation of the identity and linear heat-transfer problems

Abstract

Sufficient conditions are obtained for a Volterra integral equation whose kernel depends on an increasing parameter a to admit an approximation of the identity with respect to a in the form of a resolvent kernel. In this case, the solution of the integral equation tends to zero as a tends to infinity, and we establish estimates of this convergence in L. These results are used for obtaining estimates of the convergence of linear heat-transfer boundary conditions to Dirichlet ones as the heat-transfer coefficient tends to infinity.Отримані достатні умови, при яких інтегральне рівняння Вольтерра з ядром, що залежить від зростаючого параметра α, допускає наближення одиниці відносно α у вигляді резольвентного ядра. У цьому випадку розв'язок інгегрального рівняння прямує до нуля, коли а прямує до нескінченності, і отримані оцінки цієї збіжності в L∞. За допомогою цих результатів одержані оцінки збіжності лінійних граничних умов Діріхле, коли коефіцієнт теплообміну прямує до нескінченності

    Similar works