Combined supervised and unsupervised learning to identify subclasses of disease for better prediction

Abstract

This thesis was submitted for the award of Doctor of Philosophy and was awarded by Brunel University LondonDisease subtyping, which aids in the development of personalised treatments, remains a challenge in data analysis because of the many different ways to group patients based upon their data. However, if I can identify subclasses of disease, this will help to develop better models that are more specific to individuals and should therefore improve prediction and understanding of the underlying characteristics of the disease in question. In addition, patients might suffer from multiple disease complications. Models that are tailored to individuals could improve both prediction of multiple complications and understanding of underlying disease characteristics. However, AI models can become outdated over time due to either sudden changes in the underlying data, such as those caused by new measurement methods, or incremental changes, such as the ageing of the study population. This thesis proposes a new algorithm that integrates consensus clustering methods with classification in order to overcome issues with sample bias. The method was tested on a freely available dataset of real-world breast cancer cases and data from a London hospital on systemic sclerosis, a rare and potentially fatal condition. The results show that nearest consensus clustering classification improves accuracy and prediction significantly when this algorithm is compared with competitive similar methods. In addition, this thesis proposes a new algorithm that integrates latent class models with classification. The new algorithm uses latent class models to cluster patients within groups; this results in improved classification and aids in the understanding of the underlying differences of the discovered groups. The method was tested on data from patients with systemic sclerosis (SSc), a rare and potentially fatal condition, and coronary heart disease. Results show that the latent class multi-label classification (MLC) model improves accuracy when compared with competitive similar methods. Finally, this thesis implemented the updated concept drift method (DDM) to monitor AI models over time and detect drifts when they occur. The method was tested on data from patients with SSc and patients with coronavirus disease (COVID)

    Similar works