Induction of germ tube formation by N-acetyl-D-glucosamine in Candida albicans: uptake of inducer and germinative response.

Abstract

A number of strains of Candida albicans were tested for germ tube formation after induction by N-acetyl-D-glucosamine (GlcNAc) and other simple (proline, glucose plus glutamine) or complex (serum) compounds. A proportion of strains (high responders) were induced to form germ tubes evolving to true hyphae by GlcNAc alone or by proline or glucose plus glutamine mixture. The majority of strains were low responders because they could be induced only by serum or GlcNAc-serum medium. Two strains were found to be nonresponders: they grew as pseudohyphae in serum. Despite minor quantitative differences, all strains efficiently utilized GlcNAc for growth under the yeast form at 28 degrees C. They also had comparable active, inducible, and constitutive uptake systems for GlcNAc. During germ tube formation in GlcNAc, the inducible uptake system was modulated, as expected from induction and decay of GlcNAc kinase. Uranyl acetate, at a concentration of 0.01 mM, inhibited both GlcNAc uptake and germ tube formation and was reversed by phosphates. Germinating and nongerminating cells differed in the rapidity and extent of GlcNAc incorporation into acid-insoluble and alkali-acid-insoluble cell fractions. During germ tube formation induced by proline, GlcNAc was almost totally incorporated into the acid-insoluble fraction after 60 min. Moreover, hyphal development on induction by either GlcNAc or proline was characterized by an apparent "uncoupling" between protein and polysaccharide metabolism, the ratio between the two main cellular constituents falling from more than 1 to less than 0.5 after 270 min of development. The data suggest that utilization of the inducer for wall synthesis is a determinant of germ tube formation C. albicans but that the nature and extent of inducer uptake is not a key event for this phenomenon to occur

    Similar works