Integration through genetic programming on heterogeneous systems.

Abstract

Nowadays, numerous applications in various scientific fields require the integration of mathematical functions that, due to some of their characteristics, do not have an analytical expression for their antiderivative. These definite integrals are usually solved by numerical integration methods, which provide an approximation of the numerical value of the integral in the integration range. With this type of solutions, a higher precision of the approximation entails a longer computation time, being necessary a trade-off between both aspects. In this work we present a genetic programming algorithm which provides mathematical expressions that approximate the antiderivative of analytically non-integrable functions. Heterogeneous devices, GPU and multicore CPU, have also been used in the development of the system to accelerate the parts suitable for it. The advantage of obtaining these approximate antiderivatives is the reduction of the computation time necessary to calculate the definite integral of the functions of interest, reducing it to simply evaluating the expression at the beginning and the end of the integration range.<br /

    Similar works