Isabel\u27s Silent Partners: Seasonal and Secular Sea Level Change

Abstract

Tidal conditions fail to explain a paradoxical similarity in water level extremes induced by Hurricane Isabel on 18 September 2003, and the 23 August 1933 storm of record at Hampton Roads, Virginia. Storm surge peaks occurred near astronomical high tide during both storms, but Isabel arrived during neap tides while tides during the 1933 storm were nearer to spring. In addition, Isabel produced a lesser storm surge, yet she yielded a storm tide, or high-water mark, roughly equal to that of the 1933 hurricane. The answer to the paradox lies in observed sea level—water level measured relative to the land—and its movement during the 70 years between these events. Water level analysis shows that the sea level change observed can be divided into three categories at three different time scales: daily (astronomical tides), monthly (seasonal change), and yearly (secular trend in sea level). At Hampton Roads, a secular rise rate of 4.25 mm⋅yr-1 (1.39 ft/century) predicted an increase of 29.8 cm in 70 years; mean sea level for the month of September stood an additional 21.9 cm above the annual mean for 2003. These numbers are comparable to the mean semirange of tide (37.0 cm) at Hampton Roads. Thus seasonal and secular change are both factors of key importance in evaluating storm tide risk at time scales attributable to major hurricanes (100 years). Adoption of a new vertical reference, projected monthly mean sea level, is proposed to facilitate their inclusion in storm tide predictions at decadal time scales.https://scholarworks.wm.edu/vimsbooks/1002/thumbnail.jp

    Similar works