High Spatial Resolution Nitrogen Emission and Retention Maps of Three Danish Catchments Using Synchronous Measurements in Streams

Abstract

We investigated the utility of using synchronous measurements to create nitrogen (N) emission and retention maps of agricultural areas. Total N (TN) emissions from agricultural areas in three different Danish pilot catchments (1800–3737 ha) and within sub-catchments (100–1200 ha) were determined by a source apportionment approach. Intensive daily (main gauging stations) and fortnightly (synchronous stations) monitoring of discharge, TN, and nitrate-N (NO3-N) concentrations was conducted for two years. The groundwater N retention was calculated as the difference between a model-calculated NO3-N leaching from agricultural fields and the calculated agricultural N emission. The average annual N leaching and N emission in the three catchments amounted to 68, 48, and 58 kg N/ha and 6, 30, and 40 kg N/ha, respectively. The N retention in groundwater in the three catchments, calculated based on either TN or NO3-N emissions, amounted to 26 and 44%, 44 and 57%, and 93 and 97%, respectively, with large variations within two of the main catchments. From this study, we conclude that synchronous measurements in streams provide a good opportunity for developing local N emission and N retention maps. However, NO3-N should be used when dealing with N retention calculation at the finer resolution scale of 100–300 ha catchments

    Similar works