An effective similarity measurement under epistemic uncertainty

Abstract

The epistemic uncertainty stems from the lack of knowledge and it can be reduced when the knowledge increases. Such inter-pretation works well with data represented as a set of possible states and therefore, multivalued similarity measures. Unfortunately, set-valued extensions of similarity measures are not computationally feasible even when the data is finite. Measures with properties that allow efficient calculation of their extensions, need to be found. Analysis of various similarity measures indicated logic-based (additive) measures as an excellent candidate. Their unique properties are discussed and efficient algorithms for computing set-valued extensions are given. The work presents results related to various classes of fuzzy set families: general ones, intervals of fuzzy sets, and their finite sums. The first case is related to the concept of the Fuzzy Membership Function Family, the second corresponds to the Interval-Valued Fuzzy Sets, while the third class is equivalent to the concept of Typical Interval-Valued Hesitant Fuzzy Sets

    Similar works