Microstructure and magnetic properties of BaFe12O19 powder

Abstract

Purpose: Analysis of microstructure and magnetic properties of BaFe12O19 powder obtained by milling and annealing of Fe2O3 and BaCO3 precursors. Design/methodology/approach: The mixture of iron oxide (Fe2O3) and barium carbonate (BaCO3) powders was used to obtain BaFe12O19 powder by using high-energy ball milling and heat treatment processes. The X-ray diffraction methods were used for qualitative, quantitative phase analyses and for crystallite size and lattice distortion determination. The thermal properties of the studied powders were analyzed using the differential thermal analysis (DTA). The magnetic properties of examined powder material were studied by resonance vibrating sample magnetometer (R-VSM). The size of powder particles was determined by a laser particle analyzer. Findings: The milling process of iron oxide and barium carbonate mixture causes decrease of the crystallite size of involved phases. The X-ray diffraction investigations of Fe2O3 and BaCO3 mixture milled for 50 hours and annealed at 850, 900, 950 and 1000°C enabled the identification of hard magnetic BaFe12O19 phase and also small amount of Fe2O3 phase. The magnetic properties of studied powders are dependent on temperature of their annealing. The sample annealed at 1000°C has the best hard magnetic properties from all studied samples. The content changes of hard magnetic phase (BaFe12O19) with the increase of annealing temperature results in the improvement of hard magnetic properties. Practical implications: The BaFe12O19 powder can be suitable component to produce sintered hard magnetic materials. Originality/value: The study results of BaFe12O19 powders confirm the utility of applied investigation methods in the microstructure and magnetic properties analysis of powder materials. Keywords: X-ray phase analysis; R-VSM; High-energy ball milling; Bariu

    Similar works