Izučavanje kosmičkog zračenja, veoma je bitno za razumevanje fizičkih procesa na
visokim energijama, a energije do kojih čestice mogu da se ubrzaju u svemiru mnogo
su više od energija koje čovek trenutno može da postigne u akceleratorima na Zemlji.
Procesi u kojima nastaje kosmičko zračenje su još uvek nedovoljno objašnjeni,
a modeli koji se predlažu čekaju na eksperimentalnu potvrdu. Prisustvo kosmičkog
zračenja može da se meri kroz detekciju različitih produkata interakcija ovih visokoenergijskih čestica sa međuzvezdanom materijom kroz koju se kreću. Ova doktorska disertacija bavi se akrecionim udarnim talasima kao izvorom kosmičkog zračenja u jatima galaksija, ali i kosmičkim zracima ubrzanim u ostacima supernovih u samim galaksijama. Bez obzira koji od ovih mehanizama se razmatra, kosmičko zračenje u sudaru sa atomima i jonima međuzvezdane materije, između ostalog, proizvodi gama zračenje, neutrine, kao i lake elemente, od kojih se posebno razmatra litijum.
U disertaciji se pre svega razvijaju modeli koji opisuju gama zračenje proizvodeno
od strane kosmičkog zračenja ubrzanog na udarnim talasim nastalih u različitim procesima.
Prvo se razmatra akrecije gasa na već virijalizovane strukture na najvećim
skalama (na primer u jatima galaksija). U modelima prvi put je implementirana
vremenska promena proizvodnje gama zračenja u toku istorije svemira, koja nastaje
zbog evolucije akrecionih udarnih talasa u toku formiranja velikih struktura. Zbog
toga modeli razvijeni u ovoj disertaciji realnije opisuju gama zračenje na velikim
skalama, u odnosu na modele koji su ranije razvijani i u kojima se pretpostavljalo
da gama zračenje potiče sa jednog crvenog pomaka. Modeli se koriste za predviđanje
ukupnog gama zračenja nerazlučenih jata galaksija. Ovo modelirano gama zračenje
se zatim poredi sa posmatranim izotropnim difuznim pozadinskim gama zračenjem,
koje je izmerio teleskop Fermi-LAT, iz čega se zaključuje da ovaj tip kosmičkog
zračenja ima nezanemariv doprinos pozadinskom gama zračenju (u zavisnosti od
normalizacije modela, moguće je objasniti i skoro celu gama pozadinu) i da bi trebalo
da se uzima u razmatranje pored drugih komponenti za koje se pretpostavlja
da imaju veliki doprinos, kao što su na primer normalne nerazlučene galaksije ili
blazari.
Modeli za gama zračenje akrecionih udarnih talasa se u okviru disertacije takođe
porede i sa merenjima visokoenergijskih neutrina detektovanih od strane detektora
IceCube. Neutrini se koriste za normiranje modela, iz čega se zaključilo da ako su
akrecioni udarni talasi pretežno jaki, neutrinska pozadina jače ograničava moguću
gama emisivnost ovakvih objekata, u odnosu na pozadinsko gama zračenje koje smo
pre toga koristili. Izučavanje neutrina kao produkata interakcija kosmičkog zračenja
je od posebne važnosti, zbog toga što neutrini slabo interaguju sa drugim česticama,
pa zbog toga u sebi kriju nepromenjenu informaciju o trenutku kada su nastali, tj.
o kosmičkim zracima koji ih proizvode.
Jedan deo disertacije se bavi i proizvodnjom kosmičkog zračenja u ostacima supernovih,
konkretno u slučaju Malog Magelanovog oblaka, koji je inače detektovan
u gama oblasti. U ovoj galaksiji prvi put je izmerena zastupljenost litijuma u
međuzvezdanom gasu, izvan Mlečnog puta. S obzirom na to da i gama zračenje i
litijum nastaju kroz interakcije kosmičkog zračenja sa međuzvezdanom materijom,
njihovo zajedničko poreklo se može iskoristiti za procenu moguće proizvodnje litijuma
i gama zračenja od strane bilo koje populacije kosmičkog zračenja. Pokazano
je da galaktičko kosmičko zračenje, za koje se smatra da je dominantno u okviru
Malog Magelanovog oblaka, može da objasni tek delić posmatrane zastupljenosti litijuma,
ako se pretpostavi da je ukupna gama emisivnost ove galaksije koja se danas
meri takođe potekla od interakcija galaktičkog kosmičkog zračenja sa gasom unutar
galaksije. Ovaj zaključak je zanimljiv, jer navodi na mogućnost postojanja drugog
izvora litijuma u okviru Malog Magelanovog oblaka. Takođe, koristeći zajedničko
poreklo litijuma i gama zračenja procenjeno je i koliko nepravilne patuljaste galaksije
mogu da doprinesu difuznoj gama pozadini.
Razmatranja nekoliko različitih produkata interakcija kosmičkog zračenja sa
međuzvezdanom materijom (gama zračenja, neutrina i litijuma), na manjim skalama
(u okviru galaksija) kao i na veoma velikim skalama (jata galaksija), pokazala su da
pored galaktičkog kosmičkog zračenja nastalog u ostacima supernovih i drugo, još
uvek hipotetičko, kosmičko zračenje (nastalo npr. prilikom akrecije gasa na velikim
skalama ili plimskih interakcija galaksija), takođe može imati nezanemariv doprinos
merenjima.Studying cosmic rays is very important for better understanding of high energy
physical processes, since particles accelerated in space can reach energies far above
what we can produce in accelerators on Earth, at the moment. Processes that
produce cosmic rays are still unexplained to some extent, and models that have
been proposed are awaiting cofirmation. Presence of cosmic rays can be measured
by detecting dfferent products of interactions of these high energy particles with
the interstellar medium through which they propagate. This thesis deals with the
accretion shock as sources of cosmic rays in clusters of galaxies, as well as cosmic
rays accelerated in supernova remnants inside galaxies. No matter which of these
mechanisms is being considered, cosmic rays will collide with atoms and ions in the
interstellar medium, and produce, among other things, gamma rays, neutrinos, as
well as light elements, of which we will discuss lithium.
In the thesis we primarily develop models that describe gamma rays produced
by cosmic rays accelerated in shocks that can appear in dfferent processes. We
first examine accretion of new gas onto already virialized structures (for example
in galaxy clusters). For the first time, we include the change of gamma-ray production
with time, through the history of the universe, that re
ects the evolution
of accretion shocks which appear during large scale structure formation. Therefore,
the models developed in this thesis describe the gamma rays from large scale structures
more realistically, compared to models which have previously been developed
and which use single redshift approximation for the gamma-ray origin. Models are
used to derive the gamma-ray
ux of all unresolved galaxy clusters. These modeled
gamma rays are then compared to the isotropic dffuse gamma-ray background,
measured by telescope Fermi-LAT. This leads to the conclusion that these cosmic
rays have non-negligible contribution to the isotropic diffuse gamma-ray background
(depending on the normalization, they can even explain the whole isotropic diffuse
gamma-ray background) and that this population of cosmic rays has to be taken
into consideration in addition to other components that are thought to be major
contributors, like for example, unresolved normal galaxies or blazars.
In the thesis, models of gamma-ray production in accretion shocks are also compared
to observations of high-energy neutrinos detected by IceCube detector. Neutrinos
are used to normalize gamma-ray models, from which we conclude that if the
accretion shocks are predominantly strong, neutrino background is more limiting
to the possible gamma-ray emissivity of these objects, compared to the gamma-ray
background we first used. Study of neutrinos as products of cosmic-ray interactions
is very important, since neutrinos interact weakly with other particles, and therefore
keep all of the information about the time they were produced and about cosmic
rays that produced them.
One part of the thesis deals with the production of cosmic rays in supernova
remnants, in particular, the case of the Small Magellanic Cloud, which was detected
in gamma rays. In this galaxy we also have the first measurements of the lithium
abundances in the interstellar gas outside of the Milky Way. Since gamma rays
and lithium are produced through interactions of cosmic rays with the interstellar
medium, their same origin can be used to estimate the production of lithium and
gamma rays by any cosmic-ray population. We show that galactic cosmic rays, which
are considered to be dominant population of cosmic rays in the Small Magellanic
Cloud, can only explain a very small part of the observed abundance of lithium,
if we assume that the entire present gamma-ray emissivity that we observe also
originates from the interaction of galactic cosmic rays with gas within the galaxy.
This conclusion is interesting, because it leads to the possible existence of other
sources of lithium in the Small Magellanic Cloud. Also, using the fact that gamma
rays and lithium share the same origin, we estimate how much can irregular dwarf
galaxies contribute to the diffuse gamma-ray background.
Study of several different products of cosmic-ray interactions with the interstellar
medium (gamma rays, neutrinos and lithium) on smaller scales (within the galaxy),
as well as on the largest scales (galaxy clusters), showed that in addition to the
galactic cosmic rays accelerated in supernova remnants, other still hypothetical cosmic
rays (produced for example during accretion of gas on largest scales, or tidal
interactions of galaxies) can have a non-negligible contribution to the measurements