Assessment of the Genetic Relationship and Population Structure in Oil-Tea Camellia Species Using Simple Sequence Repeat (SSR) Markers

Abstract

Oil-tea camellia trees, the collective term for a class of economically valuable woody oil crops in China, have attracted extensive attention because of their rich nutritional and pharmaceutical value. This study aimed to analyze the genetic relationship and genetic diversity of oil-tea camellia species using polymorphic SSR markers. One-hundred and forty samples of five species were tested for genetic diversity using twenty-four SSR markers. In this study, a total of 385 alleles were identified using 24 SSR markers, and the average number of alleles per locus was 16.0417. The average Shannon’s information index (I) was 0.1890, and the percentages of polymorphic loci (P) of oil-tea camellia trees were 7.79−79.48%, indicating that oil-tea camellia trees have low diversity. Analysis of molecular variance (AMOVA) showed that the majority of genetic variation (77%) was within populations, and a small fraction (23%) occurred among populations. Principal coordinate analysis (PCoA) results indicated that the first two principal axes explained 7.30% (PC1) and 6.68% (PC2) of the total variance, respectively. Both UPGMA and PCoA divided the 140 accessions into three groups. Camellia oleifera clustered into one class, Camellia vietnamensis and Camellia gauchowensis clustered into one class, and Camellia crapnelliana and Camellia chekiangoleosa clustered into another class. It could be speculated that the genetic relationship of C. vietnamensis and C. gauchowensis is quite close. SSR markers could reflect the genetic relationship among oil-tea camellia germplasm resources, and the results of this study could provide comprehensive information on the conservation, collection, and breeding of oil-tea camellia germplasms

    Similar works