Design and Fabrication of a Robust Chitosan/Polyvinyl Alcohol-Based Humidity Sensor energized by a Piezoelectric Generator

Abstract

Due to their rapid growth in industrial and environmental applications, there is a need to develop self-powered humidity sensor systems with improved sensitivity, a wide detection range, and an eco-friendly nature. In this study, an aqueous solution of chitosan (CS) and polyvinyl alcohol (PVA) was blended to yield a composite film material with enhanced humidity detection properties. Meanwhile, a polyvinylidene difluoride (PVDF)-loaded chitosan composite film was developed and employed as a piezoelectric generator. Moreover, the developed composite materials for both devices (the piezoelectric generator and the humidity sensor) were optimized based on output performance. The piezoelectric generator generates a maximum of 16.2 V when a force of 10 N is applied and works as a power source for the humidity-sensing film. The sensing film swells in response to changes in relative humidity, which affects film resistance. This change in resistance causes a change in voltage through the piezoelectric generator and allows the precise measurement of relative humidity (RH). The fabricated sensor showed a linear response (R2 = 0.981) with a reasonable sensitivity (0.23 V/% RH) in an environment with an RH range of 21–89%. In addition, the device requires no external power, and therefore, it has numerous sensing applications in various fields

    Similar works