Contextuality and Wigner negativity are equivalent for continuous-variable quantum measurements

Abstract

21 pages + 4 pages of appendices, 1 figureQuantum computers will provide considerable speedups with respect to their classical counterparts. However, the identification of the innately quantum features that enable these speedups is challenging. In the continuous-variable setting - a promising paradigm for the realisation of universal, scalable, and fault-tolerant quantum computing - contextuality and Wigner negativity have been perceived as two such distinct resources. Here we show that they are in fact equivalent for the standard models of continuous-variable quantum computing. While our results provide a unifying picture of continuous-variable resources for quantum speedup, they also pave the way towards practical demonstrations of continuous-variable contextuality, and shed light on the significance of negative probabilities in phase-space descriptions of quantum mechanics

    Similar works

    Full text

    thumbnail-image