Leaf Functional Traits and Relationships with Soil Properties of Zanthoxylum planispinum ‘dintanensis’ in Plantations of Different Ages

Abstract

To explore the changes of leaf functional traits of Zanthoxylum planispinum ‘dintanensis’ with growth and development and its relationship with soil properties, which can clarify the response of the plantation to soil properties and suitable strategy. The research results can provide a scientific basis for plantations management. We explored the response of leaf functional traits to soil by using redundancy analysis in 5–7-, 10–12-, 20–22-, and 28–32-year Z. planispinum ‘dintanensis’ plantations. The results showed that: (1) The coefficients of variation of leaf traits ranged from 0.41% to 39.51%, with mostly medium and low variation, with the lowest variability in leaf water content (0.51–0.85%); The 5–7, 10–12, 20–22-year-old plantations were laid at the “slow investment-return” end of the economic spectrum while 28–32-year plantations were close to “fast investment-return” end. (2) The Z. planispinum ‘dintanensis’ tended to suit the environment via making trade-off and coordination of leaf functional traits. Leaf dry matter content decreased with an increase in leaf carbon/leaf nitrogen ratio, which is the trade-off between nitrogen usage efficiency and nutrient fixation capacity in Z. planispinum ‘dintanensis’. (3) Redundancy analysis suggested that soil carbon/nitrogen ratio, soil total calcium, soil water content, soil available phosphorus, soil carbon/calcium ratio were highly correlated with leaf functional traits, while soil elemental stoichiometry had a greater reflection on leaf functional traits than their own content

    Similar works